123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480 |
- //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains some functions that are useful for math stuff.
- //
- //===----------------------------------------------------------------------===//
- // Taken from llvmCore-3425.0.31.
- #ifndef LLVM_SUPPORT_MATHEXTRAS_H
- #define LLVM_SUPPORT_MATHEXTRAS_H
- namespace objc {
- // NOTE: The following support functions use the _32/_64 extensions instead of
- // type overloading so that signed and unsigned integers can be used without
- // ambiguity.
- /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
- inline uint32_t Hi_32(uint64_t Value) {
- return static_cast<uint32_t>(Value >> 32);
- }
- /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
- inline uint32_t Lo_32(uint64_t Value) {
- return static_cast<uint32_t>(Value);
- }
- /// isInt - Checks if an integer fits into the given bit width.
- template<unsigned N>
- inline bool isInt(int64_t x) {
- return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
- }
- // Template specializations to get better code for common cases.
- template<>
- inline bool isInt<8>(int64_t x) {
- return static_cast<int8_t>(x) == x;
- }
- template<>
- inline bool isInt<16>(int64_t x) {
- return static_cast<int16_t>(x) == x;
- }
- template<>
- inline bool isInt<32>(int64_t x) {
- return static_cast<int32_t>(x) == x;
- }
- /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
- /// left by S.
- template<unsigned N, unsigned S>
- inline bool isShiftedInt(int64_t x) {
- return isInt<N+S>(x) && (x % (1<<S) == 0);
- }
- /// isUInt - Checks if an unsigned integer fits into the given bit width.
- template<unsigned N>
- inline bool isUInt(uint64_t x) {
- return N >= 64 || x < (UINT64_C(1)<<N);
- }
- // Template specializations to get better code for common cases.
- template<>
- inline bool isUInt<8>(uint64_t x) {
- return static_cast<uint8_t>(x) == x;
- }
- template<>
- inline bool isUInt<16>(uint64_t x) {
- return static_cast<uint16_t>(x) == x;
- }
- template<>
- inline bool isUInt<32>(uint64_t x) {
- return static_cast<uint32_t>(x) == x;
- }
- /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
- /// left by S.
- template<unsigned N, unsigned S>
- inline bool isShiftedUInt(uint64_t x) {
- return isUInt<N+S>(x) && (x % (1<<S) == 0);
- }
- /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
- /// bit width.
- inline bool isUIntN(unsigned N, uint64_t x) {
- return x == (x & (~0ULL >> (64 - N)));
- }
- /// isIntN - Checks if an signed integer fits into the given (dynamic)
- /// bit width.
- inline bool isIntN(unsigned N, int64_t x) {
- return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
- }
- /// isMask_32 - This function returns true if the argument is a sequence of ones
- /// starting at the least significant bit with the remainder zero (32 bit
- /// version). Ex. isMask_32(0x0000FFFFU) == true.
- inline bool isMask_32(uint32_t Value) {
- return Value && ((Value + 1) & Value) == 0;
- }
- /// isMask_64 - This function returns true if the argument is a sequence of ones
- /// starting at the least significant bit with the remainder zero (64 bit
- /// version).
- inline bool isMask_64(uint64_t Value) {
- return Value && ((Value + 1) & Value) == 0;
- }
- /// isShiftedMask_32 - This function returns true if the argument contains a
- /// sequence of ones with the remainder zero (32 bit version.)
- /// Ex. isShiftedMask_32(0x0000FF00U) == true.
- inline bool isShiftedMask_32(uint32_t Value) {
- return isMask_32((Value - 1) | Value);
- }
- /// isShiftedMask_64 - This function returns true if the argument contains a
- /// sequence of ones with the remainder zero (64 bit version.)
- inline bool isShiftedMask_64(uint64_t Value) {
- return isMask_64((Value - 1) | Value);
- }
- /// isPowerOf2_32 - This function returns true if the argument is a power of
- /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
- inline bool isPowerOf2_32(uint32_t Value) {
- return Value && !(Value & (Value - 1));
- }
- /// isPowerOf2_64 - This function returns true if the argument is a power of two
- /// > 0 (64 bit edition.)
- inline bool isPowerOf2_64(uint64_t Value) {
- return Value && !(Value & (Value - int64_t(1L)));
- }
- /// CountLeadingZeros_32 - this function performs the platform optimal form of
- /// counting the number of zeros from the most significant bit to the first one
- /// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
- /// Returns 32 if the word is zero.
- inline unsigned CountLeadingZeros_32(uint32_t Value) {
- unsigned Count; // result
- #if __GNUC__ >= 4
- // PowerPC is defined for __builtin_clz(0)
- #if !defined(__ppc__) && !defined(__ppc64__)
- if (!Value) return 32;
- #endif
- Count = __builtin_clz(Value);
- #else
- if (!Value) return 32;
- Count = 0;
- // bisection method for count leading zeros
- for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
- uint32_t Tmp = Value >> Shift;
- if (Tmp) {
- Value = Tmp;
- } else {
- Count |= Shift;
- }
- }
- #endif
- return Count;
- }
- /// CountLeadingOnes_32 - this function performs the operation of
- /// counting the number of ones from the most significant bit to the first zero
- /// bit. Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
- /// Returns 32 if the word is all ones.
- inline unsigned CountLeadingOnes_32(uint32_t Value) {
- return CountLeadingZeros_32(~Value);
- }
- /// CountLeadingZeros_64 - This function performs the platform optimal form
- /// of counting the number of zeros from the most significant bit to the first
- /// one bit (64 bit edition.)
- /// Returns 64 if the word is zero.
- inline unsigned CountLeadingZeros_64(uint64_t Value) {
- unsigned Count; // result
- #if __GNUC__ >= 4
- // PowerPC is defined for __builtin_clzll(0)
- #if !defined(__ppc__) && !defined(__ppc64__)
- if (!Value) return 64;
- #endif
- Count = __builtin_clzll(Value);
- #else
- if (sizeof(long) == sizeof(int64_t)) {
- if (!Value) return 64;
- Count = 0;
- // bisection method for count leading zeros
- for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) {
- uint64_t Tmp = Value >> Shift;
- if (Tmp) {
- Value = Tmp;
- } else {
- Count |= Shift;
- }
- }
- } else {
- // get hi portion
- uint32_t Hi = Hi_32(Value);
- // if some bits in hi portion
- if (Hi) {
- // leading zeros in hi portion plus all bits in lo portion
- Count = CountLeadingZeros_32(Hi);
- } else {
- // get lo portion
- uint32_t Lo = Lo_32(Value);
- // same as 32 bit value
- Count = CountLeadingZeros_32(Lo)+32;
- }
- }
- #endif
- return Count;
- }
- /// CountLeadingOnes_64 - This function performs the operation
- /// of counting the number of ones from the most significant bit to the first
- /// zero bit (64 bit edition.)
- /// Returns 64 if the word is all ones.
- inline unsigned CountLeadingOnes_64(uint64_t Value) {
- return CountLeadingZeros_64(~Value);
- }
- /// CountTrailingZeros_32 - this function performs the platform optimal form of
- /// counting the number of zeros from the least significant bit to the first one
- /// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
- /// Returns 32 if the word is zero.
- inline unsigned CountTrailingZeros_32(uint32_t Value) {
- #if __GNUC__ >= 4
- return Value ? __builtin_ctz(Value) : 32;
- #else
- static const unsigned Mod37BitPosition[] = {
- 32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13,
- 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9,
- 5, 20, 8, 19, 18
- };
- return Mod37BitPosition[(-Value & Value) % 37];
- #endif
- }
- /// CountTrailingOnes_32 - this function performs the operation of
- /// counting the number of ones from the least significant bit to the first zero
- /// bit. Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
- /// Returns 32 if the word is all ones.
- inline unsigned CountTrailingOnes_32(uint32_t Value) {
- return CountTrailingZeros_32(~Value);
- }
- /// CountTrailingZeros_64 - This function performs the platform optimal form
- /// of counting the number of zeros from the least significant bit to the first
- /// one bit (64 bit edition.)
- /// Returns 64 if the word is zero.
- inline unsigned CountTrailingZeros_64(uint64_t Value) {
- #if __GNUC__ >= 4
- return Value ? __builtin_ctzll(Value) : 64;
- #else
- static const unsigned Mod67Position[] = {
- 64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54,
- 4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55,
- 47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27,
- 29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56,
- 7, 48, 35, 6, 34, 33, 0
- };
- return Mod67Position[(-Value & Value) % 67];
- #endif
- }
- /// CountTrailingOnes_64 - This function performs the operation
- /// of counting the number of ones from the least significant bit to the first
- /// zero bit (64 bit edition.)
- /// Returns 64 if the word is all ones.
- inline unsigned CountTrailingOnes_64(uint64_t Value) {
- return CountTrailingZeros_64(~Value);
- }
- /// CountPopulation_32 - this function counts the number of set bits in a value.
- /// Ex. CountPopulation(0xF000F000) = 8
- /// Returns 0 if the word is zero.
- inline unsigned CountPopulation_32(uint32_t Value) {
- #if __GNUC__ >= 4
- return __builtin_popcount(Value);
- #else
- uint32_t v = Value - ((Value >> 1) & 0x55555555);
- v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
- return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
- #endif
- }
- /// CountPopulation_64 - this function counts the number of set bits in a value,
- /// (64 bit edition.)
- inline unsigned CountPopulation_64(uint64_t Value) {
- #if __GNUC__ >= 4
- return __builtin_popcountll(Value);
- #else
- uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
- v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
- v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
- return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
- #endif
- }
- /// Log2_32 - This function returns the floor log base 2 of the specified value,
- /// -1 if the value is zero. (32 bit edition.)
- /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
- inline unsigned Log2_32(uint32_t Value) {
- return 31 - CountLeadingZeros_32(Value);
- }
- /// Log2_64 - This function returns the floor log base 2 of the specified value,
- /// -1 if the value is zero. (64 bit edition.)
- inline unsigned Log2_64(uint64_t Value) {
- return 63 - CountLeadingZeros_64(Value);
- }
- /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
- /// value, 32 if the value is zero. (32 bit edition).
- /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
- inline unsigned Log2_32_Ceil(uint32_t Value) {
- return 32-CountLeadingZeros_32(Value-1);
- }
- /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
- /// value, 64 if the value is zero. (64 bit edition.)
- inline unsigned Log2_64_Ceil(uint64_t Value) {
- return 64-CountLeadingZeros_64(Value-1);
- }
- /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
- /// values using Euclid's algorithm.
- inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
- while (B) {
- uint64_t T = B;
- B = A % B;
- A = T;
- }
- return A;
- }
- /// BitsToDouble - This function takes a 64-bit integer and returns the bit
- /// equivalent double.
- inline double BitsToDouble(uint64_t Bits) {
- union {
- uint64_t L;
- double D;
- } T;
- T.L = Bits;
- return T.D;
- }
- /// BitsToFloat - This function takes a 32-bit integer and returns the bit
- /// equivalent float.
- inline float BitsToFloat(uint32_t Bits) {
- union {
- uint32_t I;
- float F;
- } T;
- T.I = Bits;
- return T.F;
- }
- /// DoubleToBits - This function takes a double and returns the bit
- /// equivalent 64-bit integer. Note that copying doubles around
- /// changes the bits of NaNs on some hosts, notably x86, so this
- /// routine cannot be used if these bits are needed.
- inline uint64_t DoubleToBits(double Double) {
- union {
- uint64_t L;
- double D;
- } T;
- T.D = Double;
- return T.L;
- }
- /// FloatToBits - This function takes a float and returns the bit
- /// equivalent 32-bit integer. Note that copying floats around
- /// changes the bits of NaNs on some hosts, notably x86, so this
- /// routine cannot be used if these bits are needed.
- inline uint32_t FloatToBits(float Float) {
- union {
- uint32_t I;
- float F;
- } T;
- T.F = Float;
- return T.I;
- }
- /// Platform-independent wrappers for the C99 isnan() function.
- int IsNAN(float f);
- int IsNAN(double d);
- /// Platform-independent wrappers for the C99 isinf() function.
- int IsInf(float f);
- int IsInf(double d);
- /// MinAlign - A and B are either alignments or offsets. Return the minimum
- /// alignment that may be assumed after adding the two together.
- inline uint64_t MinAlign(uint64_t A, uint64_t B) {
- // The largest power of 2 that divides both A and B.
- return (A | B) & -(A | B);
- }
- /// NextPowerOf2 - Returns the next power of two (in 64-bits)
- /// that is strictly greater than A. Returns zero on overflow.
- inline uint64_t NextPowerOf2(uint64_t A) {
- A |= (A >> 1);
- A |= (A >> 2);
- A |= (A >> 4);
- A |= (A >> 8);
- A |= (A >> 16);
- A |= (A >> 32);
- return A + 1;
- }
- /// NextPowerOf2 - Returns the next power of two (in 32-bits)
- /// that is strictly greater than A. Returns zero on overflow.
- inline uint32_t NextPowerOf2(uint32_t A) {
- A |= (A >> 1);
- A |= (A >> 2);
- A |= (A >> 4);
- A |= (A >> 8);
- A |= (A >> 16);
- return A + 1;
- }
- /// Returns the next integer (mod 2**64) that is greater than or equal to
- /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
- ///
- /// Examples:
- /// \code
- /// RoundUpToAlignment(5, 8) = 8
- /// RoundUpToAlignment(17, 8) = 24
- /// RoundUpToAlignment(~0LL, 8) = 0
- /// \endcode
- inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
- return ((Value + Align - 1) / Align) * Align;
- }
- /// Returns the offset to the next integer (mod 2**64) that is greater than
- /// or equal to \p Value and is a multiple of \p Align. \p Align must be
- /// non-zero.
- inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
- return RoundUpToAlignment(Value, Align) - Value;
- }
- /// abs64 - absolute value of a 64-bit int. Not all environments support
- /// "abs" on whatever their name for the 64-bit int type is. The absolute
- /// value of the largest negative number is undefined, as with "abs".
- inline int64_t abs64(int64_t x) {
- return (x < 0) ? -x : x;
- }
- /// SignExtend32 - Sign extend B-bit number x to 32-bit int.
- /// Usage int32_t r = SignExtend32<5>(x);
- template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
- return int32_t(x << (32 - B)) >> (32 - B);
- }
- /// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
- /// Requires 0 < B <= 32.
- inline int32_t SignExtend32(uint32_t X, unsigned B) {
- return int32_t(X << (32 - B)) >> (32 - B);
- }
- /// SignExtend64 - Sign extend B-bit number x to 64-bit int.
- /// Usage int64_t r = SignExtend64<5>(x);
- template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
- return int64_t(x << (64 - B)) >> (64 - B);
- }
- /// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
- /// Requires 0 < B <= 64.
- inline int64_t SignExtend64(uint64_t X, unsigned B) {
- return int64_t(X << (64 - B)) >> (64 - B);
- }
- } // End llvm namespace
- #endif
|